




高??蒲性核酶呒兌戎频獧C(jī),以壓縮空氣為原料,利用一種叫作碳分子篩的吸附劑對氮、氧的選擇性吸附,把空氣中的氮分離出來。碳分子篩對氮、氧的分離作用主要是基于氮、氧分子在分子篩表面的擴(kuò)散速率不同。較小直徑的氧分子擴(kuò)散較快,較多地進(jìn)入分子篩固相;較大直徑的氮分子擴(kuò)散較慢,較少進(jìn)入分子篩固相。這樣,氮在氣相中得到富集。 一段時間后,分子篩對氧的吸附達(dá)到一定程度,通過減壓,被碳分子篩吸附的氣體被釋放出來,分子篩也就完成了再生。這是基于分子篩在不同壓力下對吸附氣體的吸附量不同的特點。變壓吸附制氮設(shè)備通常使用二個并聯(lián)的吸附器,交替進(jìn)行加壓吸附和減壓再生,操作循環(huán)周期約2分鐘。 高校、科研院所制氮機(jī),高??蒲性核呒兌戎频獧C(jī)、氮氣發(fā)生器的主要特點; 1、能耗低,成本少,產(chǎn)氣快速,純度易調(diào)節(jié); 2、操作簡便,一鍵啟動,傻瓜式界面按鈕; 3、模塊化結(jié)構(gòu)設(shè)計; 4、操作簡便,性能穩(wěn)定,自動化程度高; 5、合理的內(nèi)部結(jié)構(gòu)設(shè)計,提高碳分子篩的吸附效率; 6、減輕氣流高速沖擊,延長碳分子篩的使用壽命。 7、快,能耗低,節(jié)約面積。
PSA變壓吸附制氮原理 碳分子篩可以同時吸附空氣中的氧和氮,其吸附量也隨著壓力的升高而升高,而且在同一壓力下氧和氮的平衡吸附量無明顯的差異。因而,僅憑壓力的變化很難完成氧和氮的有效分離。如果進(jìn)一步考慮吸附速度的話,就能將氧和氮的吸附特性有效地區(qū)分開來。氧分子直徑比氮分子小,因而擴(kuò)散速度比氮快數(shù)百倍,故碳分子篩吸附氧的速度也很快,吸附約1分鐘就達(dá)到90%以上;而此時氮的吸附量僅有5%左右,所以此時吸附的大體上都是氧氣,而剩下的大體上都是氮氣。這樣,如果將吸附時間控制在1分鐘以內(nèi)的話,就可以將氧和氮初步分離開來,也就是說,吸附和解吸是靠壓力差來實現(xiàn)的,壓力升高時吸附,壓力下降時解吸。而區(qū)分氧和氮是靠兩者被吸附的速度差,通過控制吸附時間來實現(xiàn)的,將時間控制的很短,氧已充分吸附,而氮還未來得及吸附,就停止了吸附過程。因而變壓吸附制氮要有壓力的變化,也要將時間控制在1分鐘以內(nèi)。 深冷空分制氮原理 深冷制氮不僅可以生產(chǎn)氮氣而且可以生產(chǎn)液氮,滿足需要液氮的工藝要求,并且可在液氮貯槽內(nèi)貯存,當(dāng)出現(xiàn)氮氣間斷負(fù)荷或空分設(shè)備小修時,貯槽內(nèi)的液氮進(jìn)入汽化器被加熱后,送入產(chǎn)品氮氣管道滿足工藝裝置對氮氣的需求。深冷制氮的運轉(zhuǎn)周期(指兩次大加溫之間的間隔期)一般為1年以上,因此,深冷制氮一般不考慮備用。而變壓吸附制氮只能生產(chǎn)氮氣,無備用手段,單套設(shè)備不能保證連續(xù)長周期運行。 膜空分制氮原理 空氣經(jīng)壓縮機(jī)壓縮過濾后進(jìn)入高分子膜過濾器,由于各種氣體在膜中溶解度和擴(kuò)散系數(shù)不同,導(dǎo)致不同氣體在膜中相對滲透速率不同。根據(jù)這一特性,可將各種氣體分為“快氣”和“慢氣”。 當(dāng)混合氣體在膜兩側(cè)壓力差的作用下,滲透速率相對快的氣體,如水、氫氣、氦氣、硫化氫、二氧化碳等透過膜后,在膜的滲透側(cè)被富集,而滲透速率相對較慢的氣體,如甲烷、氮氣、一氧化碳和氬氣等氣體則被滯留在膜的側(cè)被富集,從而達(dá)到混合氣體分離的目的。